Shape coexistence in 96,98Sr studied by low-energy Coulomb excitation

E. Clément1, M. Zielińska2, A. Görgen3, W. Korten2, S. Péru4, J. Libert4, H. Goutte2, S. Hilaire4, D.T. Doherty2,5

1 GANIL, Caen, France; 2 CEA Saclay, France; 3 University of Oslo, Norway; 4 CEA/DAM, Bruyères-le-Châtel, France 5 University of York, UK;

and the IS451 collaboration:

6 TU Darmstadt, Germany; 7 IKP Cologne, Germany; 8 KU Leuven, Belgium; 9 University of Liverpool, UK; 10 CERN, Switzerland; 11 University of Lund, Sweden; 12 University of Manchester, UK; 13 CSNSM, Orsay, France; 14 LMU Munich, Germany; 15 Heavy Ion Laboratory, Warsaw, Poland; 16 University of Jyväskylä, Finland;
Shape transition at N=60 and shape coexistence around 100Zr

- dramatic change of the ground state structure observed at N = 58, 60 for Rb, Sr, Y, Zr
- onset of deformation at N=60 confirmed by 2^+ energies and transition probabilities in even-even Zr, Sr
- low-lying 0^+ states observed in N=58,60 Zr, Sr

P. Campbell et al., Prog. Part. Nucl. Phys. 86 (2016) 127
Shape coexistence and type-II shell evolution in Zr isotopes

- p-n tensor interaction reduces the Z=40 gap when $\nu g7/2$ is being filled
- 0_2^+ states created by 2p-2h (+ 4p-4h...) excitation across Z=40
- very different configurations and small mixing of 0_1^+ and 0_2^+
Coulomb excitation

- population of excited states via purely electromagnetic interaction between the collision partners

- \(B(E2) \) transition probabilities – measure of collectivity
- direct measurement of quadrupole moments including sign – ideal tool to study shape coexistence
- easy way to access non-yrast states and study their properties
- renaissance of the technique as ideally suited for state-of-the-art RIB facilities:
 - beam energies available perfect for Coulomb excitation (2-5 MeV/A)
 - high cross sections (excitation of \(2^+ \): barns)
 - practical at the neutron-rich side
Coulomb excitation of 96,98Sr at ISOLDE

gamma-ray detection array:
MINIBALL
8 triple clusters, 8% efficiency

particle detection setup:
annular DSSD detector at forward angles
detection of scattered Sr and recoiling target nuclei

- deexcitation γ rays measured in coincidence with particles (Sr and target recoils)
- targets: 109Ag, 120Sn (96Sr), 60Ni, 208Pb (98Sr)
- beam intensities: $7 \cdot 10^3$ pps for 96Sr (REX-TRAP problem), $6 \cdot 10^4$ pps for 98Sr
Deformation of 96Sr

β (from Q_s) = $0.11^{+0.15}_{-0.14}$

B(E2) in agreement with lifetime but more precise

low deformation of gsb confirmed
98Sr: quadrupole moments and transition probabilities

- well deformed prolate band ($\beta \geq 0.3$)
- low deformation of the excited band ($\beta < 0.1$)
- similar deformation of 0_1^+ in 96Sr and 0_2^+ in 98Sr

Shape coexistence: two-state mixing

Mixing of the g.s. (from distortion of rotational bands)

Mixing amplitudes for 98Sr (from ME): $\cos^2 \theta_0 = 0.87(1)$, $\cos^2 \theta_2 = 0.99(1)$
Theoretical predictions for Sr isotopes

- beyond mean field calculations: GCM (GOA) D1S, (S. Péru, H. Goutte, J. Libert et al)
- first detailed calculation of transition probabilities on both sides of the N=60 shape transition
- shape change at N=60 and shape coexistence reproduced
Theoretical predictions for Sr isotopes

- collectivity in ground-state bands overestimated as well as mixing of the structures
Theoretical predictions for Sr isotopes

- collectivity in ground-state bands overestimated as well as mixing of the structures
- calculated K=2 band in 98Sr has no experimental counterpart
Triaxiality in 98Sr

- gamma $\approx 25^\circ$ would explain the reduction of $Q_s(2^+_1)$ in 98Sr

- but where is the gamma band?

J. Xiang et al., PRC 93, 054324 (2016), 5DCH with PC-PK1 interaction
Summary and outlook

- shape coexistence in ^{98}Sr and similarity of 0_1^+ in ^{96}Sr and 0_2^+ in ^{98}Sr confirmed by measured quadrupole moments and quadrupole invariants

- low mixing of coexistent structures in contrast to Hg and Kr nuclei

- general features well reproduced by beyond-mean-field calculations

- ^{96}Sr to be revisited (development of deformation in the ground-state band, structures built on $0_{2,3}^+$ states)

- the role of triaxiality in $^{96,98}\text{Sr}$ remains an open question
Quadrupole sum rules

K. Kumar, PRL 28 (1972) 249

- electromagnetic multipole operators are spherical tensors – products of such operators coupled to angular momentum 0 are rotationally invariant

- in the intrinsic frame of the nucleus, the E2 operator may be expressed by 2 parameters related to charge distribution:

\[
E(2, 0) = Q \cos \delta
\]

\[
E(2, 2) = E(2, -2) = \frac{Q}{\sqrt{2}} \sin \delta
\]

\[
E(2, 1) = E(2, -1) = 0
\]

\[
\langle Q^2 \rangle = \langle i | [E2 \times E2]^0 | i \rangle = \frac{1}{\sqrt{(2I_i + 1)}} \sum_t \langle i|E2||t \rangle \langle t||E2||i \rangle \left\{ \begin{array}{ccc}
2 & 2 & 0 \\
2I_i & I_i & I_t \\
\end{array} \right\}
\]

\[
\langle Q^2 \rangle: \text{overall deformation parameter}
\]
Quadrupole sum rules: triaxiality

K. Kumar, PRL 28 (1972)

\[
\sqrt{\frac{2}{35}} \langle Q^3 \cos 3\delta \rangle = \langle i|\{[E2 \times E2]^2 \times E2\}_0^0|i\rangle \\
= \frac{1}{(2I_i + 1)} \sum_{i, u} \langle i||E2||u\rangle \langle u||E2||t\rangle \langle t||E2||i\rangle \begin{pmatrix} 2 & 2 & 2 \\ I_i & I_t & I_u \end{pmatrix}
\]

\[\langle \cos 3\delta \rangle: \text{ triaxiality parameter}\]
Theoretical predictions for Sr isotopes

GCM(GOA) D1S vs experiment
Coulomb excitation of 98Sr

- 2 targets differing in Z: 60Ni and 208Pb
- gsb populated up to 8^+
- good statistics: 4 subdivisions of CM angles for 208Pb, 3 for 60Ni