Measuring neutron capture rates on ILL-produced unstable isotopes for nucleosynthesis studies

J. Lerendegui-Marco1, C. Guerrero1, C. Domingo-Pardo2, A. Casanovas3, S. Halfon4, S. Heinitz5, N. Kivel5, U. Köster6, M. Paul7, R. Dressler5, D. Schumann5, M. Tessler7 and The n_TOF Collaboration8

1) Universidad de Sevilla, Sevilla, Spain
2) Instituto de Física Corpuscular, Paterna, Spain
3) Universitat Politècnica de Catalunya, Barcelona, Spain
4) Soreq NRC, Yavne, Israel
5) Paul Scherrer Institut, Villigen, Switzerland
6) Institut Laue-Langevin, Grenoble, France
7) Racah Institute of Physics, Hebrew University, Jerusalem, Israel
8) European Center for Nuclear Research (CERN), Geneva, Switzerland

Fission 2017, Chamrousse, 20th-24th March 2017
Interest for neutron capture measurements

- **Nuclear Astrophysics: s-process**

 - **Site:** He-intershell in AGB stars (red giant)
 - **Branching point:** β^- decay competes with (n,γ)

 Suff. long $\tau_{1/2} ||$ Suff. High Φ_n

\[\begin{array}{ccc}
(n,\gamma) & (n,\gamma) & (n,\gamma) \\
(n,\gamma) & (n,\gamma) & (n,\gamma) \\
(n,\gamma) & \beta^- & (n,\gamma) \\
\end{array} \]

Branching point s-process

$\sigma(n,\gamma)$ input from nuclear data + ratio of chemical abundances \rightarrow bounds the temperature and neutron flux in stellar models
(n,γ) measurements on unstable isotopes

Main limitation of current facilities and techniques: Need for massive (~mg) and isotopically pure samples

Successful collaboration to produce relevant unstable isotopes (ILL) and prepare high quality targets (PSI)

After this big effort to produce the samples: Complementary (n,γ) measurements using different beams and techniques available (n_TOF, LILIT, TRIGA, BRR)
171Tm (n,γ):
thermal, resonance and MACS cross sections
171Tm(n,γ): Preparation of radioactive targets

Production via (n, γ) or (n, γ)+β⁻ at the ILL research reactor [Contact: Ulli Koester]
Neutron flux: 1.5x10^{15} n/cm²/s
Irradiation time: 55 days

171Tm: 170Er(n,γ)171Er(β⁻, 7.5h)171Tm (enrichment 1.8%)

3.81 mg of 171Tm (1.9 y) [1.3 x 10^{19} atoms]

Do not exist in nature → Small masses produced
Activity challenge to handle and measure

Chemical separation and targets @ PSI [Stephan Heinitz’s Talk]

Assembly mounted –

147Pm deposit (20 mm diameter)
Aluminum (7 μm) backing
PCB frame (50 mm diameter)
Mylar (5 μm)
$^{171}\text{Tm (n,}\gamma\text{): Energy ranges and beams}$

MACS: Maxwellian Averaged Cross Section

NEUTRON CROSS SECTION MEASUREMENTS:
How to produce of neutrons in each energy range
How to measure neutron energy and detect the reaction products
$^{171}_{\text{Tm}}(n,\gamma)$ MACS: LiLiT facility @ SARAF

Liquid lithium: $^7\text{Li}(p,n)$

$\sim 1.935 \text{ MeV protons}$

1-2 mA

$^{197}_{\text{Au}}(n,\gamma)^{198}_{\text{Au}}$ \(\rightarrow\) β^- decay with $t_{1/2} = 2.69 \text{ d}$ \(\rightarrow\) $E_\gamma = 412 \text{ keV}$

Case 2. $^{171}_{\text{Tm}}(n,\gamma)^{172}_{\text{Tm}}$ \(\rightarrow\) β^- decay with $t_{1/2} = 2.65 \text{ d}$ \(\rightarrow\) $E_\gamma = 1093, 1387, 1529, 1608 \text{ keV}$
$^{171}\text{Tm}(n,\gamma)$ MACS: Results

$$\sigma_{\text{MACS}}\left(^{171}\text{Tm}, \kappa T=30 \text{ keV}\right) = 198 (22) \text{ mb}$$

Significant reduction of the MACS at 30 keV

JEFF 3.2 (x6) and also KADoNiS overestimate the MACS

Evolution of calculations also tends to lower the cross-section
171Tm(n,γ) Thermal Cross-section

- **Thermal cross-section:**
 - Maxwellian spectra @ KT= 25meV
- **Prompt Gamma Activation Analysis** using the n_TOF targets

MACS and thermal provide just two points: TOF measurement needed for pointwise cross-section
CERN-n_TOF: Time-of-flight technique

BEAM LINE EAR1

Spallation target

Pb

PS Proton pulses

(20 GeV/c) $\sigma = 7$ ns

Pb

Spallation

MeV-GeV Neutrons

C_6D_6

Scintillators

Reaction products

Transmission

Scattering

Flux (Φ) (neutrons/cm2)

Time-of-Flight to E_n relation (non-rel.):

$$ToF = t - t_0 \propto \frac{L}{\sqrt{E_n}}$$

5cm water moderator

5cm water moderator

L = 184 m

E_n = 12 MeV to 1 GeV

γ-rays

$\sigma = 7$ ns

ν-MCAS

Capture setup

SILL

ToF Monitors

FLUX Monitors

<table>
<thead>
<tr>
<th>Spallation target</th>
<th>Shielding</th>
<th>Filter station</th>
<th>First collimator</th>
<th>Shielding</th>
<th>Sweeping magnet</th>
<th>Second collimator</th>
<th>Experimental area</th>
<th>Beam dump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 0.35 70.2 134.9 134.9 136.7 145.4 178.0 182.3 190.3 200
\[\sigma_{n,\gamma}(E_n) = \frac{C(E_n) - B(E_n)}{n_{\text{act}} \epsilon_{\text{det}} \Phi_n(E_n)} \]

- Counts vs En
- Resonance parameters: \(E, J, \Gamma_n, \Gamma_{\gamma} \)
- Efficiency to detect a cascade
- Counts -> Pointwise cross section
- Challenge: Sample activity
- Resonance analysis 1 - 700 eV
171Tm (n,γ) at n_TOF: Resonance region

Before: Just TENDL-2012 (TALYS calculation)

n_TOF data: Overestimation of density and strength in TENDL S_0, D_0, $<\Gamma_\gamma>$ significantly smaller than systematics (Mughabghab)
Other s-process isotopes produced at ILL

147Pm

Branching at A= 147/148

\[^{146}\text{Nd}(n,\gamma)^{147}\text{Nd} (\beta^-, 10\text{d})^{147}\text{Pm} \rightarrow \text{Final mass 83 ug!} \]

n_TOF - EAR2:
First time ever (n, γ)
Few resonances (smallest mass ever!)

MACS @ LiLiT: **1200 ± 120** mb
Significantly larger than previous measurement

204Tl

205Pb/205Tl clock
Early universe

\[^{203}\text{Tl}(n,\gamma)^{204}\text{Tl} \rightarrow 6 \text{ mg of }^{204}\text{Tl} (3.78 \text{ y}) \text{ [3.25e19 atoms]} \]

n_TOF - EAR1: First time ever (n, γ)
- 200 GBq + high Q_β decay
-Pellet disaggregation during irradiation
-Resonances (KeV) → Direct MACS
No activation possible (**205Tl** stable)
Relevant branching $A=80$ to constrain s-process T, density and role of main/weak

$^{78}\text{Se}(n,\gamma)^{79}\text{Se} (327\text{ky}) \rightarrow \sim 8\text{mg}$

-Difficulty in the past: Impurities in the Pb-Se alloy (Melts @ 217 ºC)
-This time: Pure $^{208}\text{Pb-}^{78}\text{Se}$ seed

Planned to be measured at n_TOF - EAR2: First time ever (n, γ)
Direct MACS from resonances

No activation possible (^{80}Se stable)

Branching $A=163$, beta decay rate \leftrightarrow mass density

HOLMES Project: neutrino mass with a calorimeter measuring the endpoint of the ^{163}Ho β^+ spectrum.

$^{162}\text{Er}(n, \gamma)^{163}\text{Er} (b^+)^{163}\text{Ho} (4570 \gamma) : \sim 6\text{ mg}$

Proposed at n_TOF - EAR1+EAR2: First time ever (n, γ)
Resonance parameters + MACS
Summary and conclusions

- **s-process: (n, γ) cross-section** certain isotopes key input for stellar evolution models

- \(^{171}\text{Tm},^{147}\text{Pm},^{204}\text{Th},^{79}\text{Se},^{163}\text{Ho}\): s-process branching points:
 Benefitted from the **collaboration** with ILL for the production + PSI for target preparation of radioactive targets, our main interest for both astrophysics and reactor physics.

- \(^{171}\text{Tm}\) (n,γ): different neutron beams & techniques in complementary energy ranges

- **n_TOF**: White neutron beam + Time-of-flight technique
 - Pointwise cross section \(\rightarrow\) Resonances and average parameters for the keV region

- **LiLiT @ SARAF**: Quasi-stellar spectra (\(^7\text{Li}(p,n)^7\text{Be}\) reaction)
 - MACS measurement via activation \(\rightarrow\) Decay of the produced \(^{172}\text{Tm}\) nuclei

- **TRIGA** (analysis ongoing) and **BRR** (near future): **Maxwellian spectra at thermal**
 - Measurement via activation and PGAA

- **n_TOF** and **SARAF** indicate a significant reduction of x-section compared to models
THANKS FOR YOUR ATTENTION!
s-process branching points

TABLE III. Feasibility of future TOF measurements on unstable branch-point isotopes at the FRANZ facility.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Half-life (yr)</th>
<th>Q value (MeV)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>65Ni</td>
<td>100.1</td>
<td>β^-, 0.066</td>
<td>TOF work in progress (Couture, 2009), sample with low enrichment</td>
</tr>
<tr>
<td>79Se</td>
<td>2.95×10^3</td>
<td>β^-, 0.159</td>
<td>Important branching, constrains s-process temperature in massive stars</td>
</tr>
<tr>
<td>81Kr</td>
<td>2.29×10^3</td>
<td>EC, 0.322</td>
<td>Part of 79Se branching</td>
</tr>
<tr>
<td>85Kr</td>
<td>10.73</td>
<td>β^-, 0.687</td>
<td>Important branching, constrains neutron density in massive stars</td>
</tr>
<tr>
<td>95Zr</td>
<td>64.02 d</td>
<td>β^-, 1.125</td>
<td>Not feasible in near future, but important for neutron density low-mass AGB stars</td>
</tr>
<tr>
<td>134Cs</td>
<td>2.0652</td>
<td>β^-, 2.059</td>
<td>Important branching at $A = 134, 135$, sensitive to s-process temperature in low-mass AGB stars, measurement not feasible in near future</td>
</tr>
<tr>
<td>135Cs</td>
<td>2.3×10^6</td>
<td>β^-, 0.269</td>
<td>So far only activation measurement at $kT = 25$ keV by Patronis et al. (2004)</td>
</tr>
<tr>
<td>147Nd</td>
<td>10.981 d</td>
<td>β^-, 0.896</td>
<td>Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars</td>
</tr>
<tr>
<td>147Pm</td>
<td>2.6234</td>
<td>β^-, 0.225</td>
<td>Part of branching at $A = 147/148$</td>
</tr>
<tr>
<td>148Pm</td>
<td>5.368 d</td>
<td>β^-, 2.464</td>
<td>Not feasible in the near future</td>
</tr>
<tr>
<td>151Sm</td>
<td>90</td>
<td>β^-, 0.076</td>
<td>Existing TOF measurements, full set of MACS data available (Abbondanno et al., 2004a; Wisshak et al., 2006c)</td>
</tr>
<tr>
<td>154Eu</td>
<td>8.593</td>
<td>β^-, 1.978</td>
<td>Complex branching at $A = 154, 155$, sensitive to temperature and neutron density</td>
</tr>
<tr>
<td>155Eu</td>
<td>4.753</td>
<td>β^-, 0.246</td>
<td>So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)</td>
</tr>
<tr>
<td>153Gd</td>
<td>0.658</td>
<td>EC, 0.244</td>
<td>Part of branching at $A = 154, 155$</td>
</tr>
<tr>
<td>160Tb</td>
<td>0.198</td>
<td>β^-, 1.833</td>
<td>Weak temperature-sensitive branching, very challenging experiment</td>
</tr>
<tr>
<td>162Ho</td>
<td>4570</td>
<td>EC, 0.0026</td>
<td>Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)</td>
</tr>
<tr>
<td>170Tm</td>
<td>0.352</td>
<td>β^-, 0.968</td>
<td>Important branching, constrains neutron density in low-mass AGB stars</td>
</tr>
<tr>
<td>171Tm</td>
<td>1.971</td>
<td>β^-, 0.098</td>
<td>Part of branching at $A = 170, 171$</td>
</tr>
<tr>
<td>179Ta</td>
<td>1.82</td>
<td>EC, 0.115</td>
<td>Crucial for s-process contribution to 180Ta, nature’s rarest stable isotope</td>
</tr>
<tr>
<td>185W</td>
<td>0.206</td>
<td>β^-, 0.432</td>
<td>Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars</td>
</tr>
<tr>
<td>204Tl</td>
<td>3.78</td>
<td>β^-, 0.763</td>
<td>Determines 208Pb/205Tl clock for dating of early Solar System</td>
</tr>
</tbody>
</table>
171Tm (n,γ): a European trip towards the thermal, resonance and MACS cross sections

1) Irradiation of stable seeds
2) Separation and samples
3) Activation: thermal reactor
4) TOF + white n beam: Pointwise cross section
5) Activation: Quasi-stellar spectrum
6) PGAA: thermal reactor

Coordination and analysis
Nucleosynthesis through the s process

Solar abundance distribution

Stellar burning

NSE

r-process

Weak

Main s-process

p-process

Others?

Mass number

Abundance

10^{10}

10^{9}

10^{8}

10^{7}

10^{6}

10^{5}

10^{4}

10^{3}

10^{2}

10^{1}

10^{0}

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

10^{-7}

10^{-8}

10^{-9}

10^{-10}
^{171}Tm as part of branching at $A=170/171$

The $A=170/171$ branching point is one of the branchings that is independent of stellar temperature, therefore suited for constraining the s-process neutron density in low-mass AGB stars (i.e. main s-process component).

$$n_n = 0.7^{+4.9}_{-0.5} \cdot 10^8 \text{ cm}^{-3}$$

In view of the difficulties related to production of ^{170}Tm, experimental information on ^{171}Tm becomes important as part of the branching, but also as the more important for improved HF predictions of the ^{170}Tm cross section.
$^{171}\text{Tm (n,}\gamma\text{): Activated nuclei to MACS}$

$$\sigma_{MACS}(Tm, kT = 30\text{keV}) = \frac{2}{\sqrt{\pi}} \frac{C_{En}(Tm, kT = 30\text{keV})}{\sigma_{\text{exp}}(Au) N_{172Tm}/N_{171Tm}}$$

$C_{En}(Tm, kT = 30\text{keV})$

$$= \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \sigma_{\text{lib}}(Tm, E_n) E_n e^{-E_n/kT} dE_n \frac{\int_{0}^{\infty} dE_n dE_n}{\int_{0}^{\infty} E_n e^{-E_n/kT} dE_n}$$

Correction for the shapes of the flux and the ^{171}Tm X-section

Correction for the shape of the flux of the Au ref. MACS

Measured quantity: Activated nuclei
Normalization factors of *INCLXX_HPT physics lists are improved in v10.1.1 by about 15% w.r.t v10.0.3 of the Geant4 toolkit.
$^{171}\text{Tm (n,γ) at n_TOF: Resonance region}$

Average resonance parameters

$D_0 = 21(3) \text{ eV (sys: 7 eV)}$

$S_0 = 0.90(26) \text{ (sys: 1.6)}$

$<\Gamma_\gamma> = 76(9) \text{ meV (sys: 100 meV)}$

Significant reduction of x-section wrt systematic studies
Branching points: example at A=147/148

Carlos GUERRERO “Neutron capture cross sections of the s-process branching points 147Pm, 171Tm and 204Tl”
Nuclei in the Cosmos NIC-2016, Niigta, Japan (June 20th-24th 2016)
Results for 147Pm(n,γ) @n_TOF-EAR2

- Activity background not a problem in EAR2
- Statistics very limited, due to small mass
- But still, 10-15 resonances observed (1st time!)
147\text{Pm}(n,\gamma)148\text{Pm} \rightarrow \beta^- \text{ decay with } t_{1/2} = 5.4 \pm 1.41 \text{ d}

1014 \text{ keV: from } 147\text{Pm}(n,\gamma)148\text{Pm} \rightarrow 1465 \text{ keV: from } 147\text{Pm}(n,\gamma)148\text{Pm}

Preliminary results indicate that the partial cross sections are quite different, while the only available (Reifarth:2003) data suggest only a difference of only 25%.
MACS results for 147Pm

\[\sigma_{\text{MACS}}(^{147}\text{Pm}, \text{kT}=30 \text{ keV}) = 1236 (185^*) \text{ mb} \]

\[\sigma_{\text{MACS}}(^{147}\text{gPm}, \text{kT}=30 \text{ keV}) = 406(60^*) \text{ mb} \]

\[\sigma_{\text{MACS}}(^{147}\text{mPm}, \text{kT}=30 \text{ keV}) = 830(125^*) \text{ mb} \]

*Preliminary 15% uncertainty
204Tl determines the 205Pb/205Tl clock for dating of early Solar System

205Pb ($t_{1/2} = 1.5 \times 10^7$ a) is produced only by the s-process:

The ratio 205Pb/205Tl provides highly interesting chronometric information about the time span between the last nucleosynthetic events that were able to modify the composition of the solar nebula and the formation of solar system solid bodies.

(At present, there is an upper limit for the 205Pb/205Tl abundance ratio of 9×10^{-5} from meteorites)

K. Yokoi et al., Astronomy and Astrophysics 145, 339-346 (1985)

Blake et al., Nature, 1973
HOLMES: The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity

The determination of the absolute neutrino mass m_ν is still an open question in particle physics. Currently, the most stringent limit of $m_{\nu e} < 2 \text{ eV}$ was achieved for the electron anti-neutrino mass from the measurement of the endpoint of the decay of ^3H. Novel experimental approaches exploring the endpoint of the β^--decay of ^3H or the electron capture of ^{163}Ho offer great potential to reach a sub–eV sensitivity on $m_{\nu e}$.

The HOLMES experiment is going to investigate the neutrino mass with a calorimeter measuring the endpoint of the ^{163}Ho spectrum.
163Ho as part of branching at A=163

163Dy is stable, but β^- (47 d) to 163Ho when fully ionized (stellar plasma)

Equilibrium abundance of 163Ho from decay of 163Dy and decay back from 163Ho makes it possible to produce 164Ho via (n,g). The equilibrium abundance of 163Ho is determined by the temperature and electron density in the star, which is directly related to the mass density.

S. Jaag and F. Käppeler, ApJ 464 (1996) → 163Ho MACS$_{30\text{keV}} = 2125(95)$ mb (0.2mg target)
Measuring $\sigma(n,\gamma)$: activation & ToF

Activation with a Maxwellian ($kT=$ tens of keV) neutron beam from 7Li(p,n) reactions

This project:
Highest intensity 7Li(p,n) beam worldwide: LiLiT @ SARAF (Israel)

Outcome: capture cross sections at a given $kT=$ tens of keV (ONE POINT!)

Time of Flight experiments with white neutron beams

This project:
Highest inst. intensity pulsed white beam worldwide: n_TOF@CERN
(we need to measure (n,γ) γ-rays from GBq targets)

Outcome: (point-wise) capture cross sections as function of E_n
171Tm (n,γ): MACS measurement @ LiLiT

2×10^{10} n/s/mA
1-2 mA
~2 kW

Liquid Lithium Target
(@SARAF, Israel)
$^{171}\text{Tm} (n,\gamma)$ measurement @ n_TOF

EAR1 using Total Energy Detectors

B6D6#1
B6D6#2
B6D6#3
B6D6#4

C$_6$D$_6$ Scintillators

Nov-Dec 2014

PULSE HEIGHT WEIGHTING TECHNIQUE:
Accurate simulations required

Geant4 model of the setup
Total Energy Detection technique

- Two conditions must be fulfilled:

 I.) Low Efficiency Detectors: \(\varepsilon_{\gamma_i} \ll 1, \forall i \)

 \[
 \varepsilon_c = 1 - \prod_{i=1}^{m_r} (1 - \varepsilon_{\gamma_i}) \approx \sum_{i=1}^{m_r} \varepsilon_{\gamma_i}
 \]

 II.) Efficiency to detect a \(\gamma \)-ray is proportional to its energy: \(\varepsilon_{\gamma_i} \propto E_{\gamma_i} \)

 \[
 \varepsilon_c = k \sum_{i=1}^{m_r} E_{\gamma_i} = k E_c
 \]

 Total efficiency depends on \(E_c \) and not on the decay path

 First idea: **Moxon-Rae** detectors:
 - Using a converter: maximum depth of escaping electrons increases with \(E_{\gamma} \) ...
 - Proportionality not really fulfilled
 - Sensitive to neutrons
TED with C$_6$D$_6$ detectors

- **C$_6$D$_6$ Detectors**: Low neutron sensitivity (10^{-4} ϵ_γ)
 - Benzene: Organic scintillator
 - H replaced by D \rightarrow Avoid H(n,γ)D + 2.2MeV γ-ray

- **Fulfill condition I**: Low efficiency detectors $\epsilon_{\gamma_i} << 1$

 Detecting a cascade: $\epsilon_c = 1 - \prod (1 - \epsilon_{\gamma_i}) \approx \sum \epsilon_{\gamma_i}$

- The efficiency is **NOT proportional** to γ-ray energy:

 $$\epsilon_{\gamma_i} \propto E_{\gamma_i}$$

The proportionality between efficiency and γ-ray energy is obtained by software manipulation of the detector response (R_{ij})

Proportionality fulfilled with Weighting factors W_j dependent on the Energy deposited E_{γ_j}:

$$W_j = W(E_{\gamma_j}) : \sum_j W_j R_{ij} = E_{\gamma_i}, \quad \epsilon_i \approx \sum_j R_{ij}$$