Shells, Anti-Shells and Modes in Nuclear Fission

F. Gönnenwein

University of Tübingen / Germany
Shells and Anti-Shells

Nuclear Masses in the Liquid Drop Model (LDM):

\[M(A,Z) = a_V A + a_S A^{\frac{2}{3}} + a_C Z^2 / A^{\frac{2}{3}} + a_I (N-Z)^2 / A - \delta(A) \]

Volume, Surface, Coulomb, Symmetry, Pairing

“SHELL” corrections:

Macroscopic LDM describes average masses. Microscopic nuclear structure necessitates corrections.

\[\delta W = M_{\text{exp}} - M_{\text{LDM}} \]

Myers-Swiatecki 1966: neutron and proton ranges with \(\delta W < 0 \) and \(\delta W > 0 \) alternate

\[\delta W < 0: \text{ nuclei are more tightly bound than in LDM: “SHELLS”} \]

\[\delta W > 0: \text{ nuclei are less tightly bound than in LDM: “ANTI-SHELLS”} \]

Shell corrections for actual fission fragments.

Shell for \(A \approx 130 \text{ u} \)
Anti-shell for \(A \approx 110 - 120 \text{ u} \) and \(A > 150 \text{ u} \)
Properties
of shell and anti-shell nuclei

Stiffness of nuclei

\[E_{\text{Deformation}} = \alpha (D - R_0)^2 \]
\[\alpha = \text{stiffness} \]
\[D = \text{maj. semi-axis of spheroid} \]

\[\delta W < 0 \iff \alpha > \alpha_{\text{LDM}} \quad \text{stiff} \]
\[\delta W > 0 \iff \alpha < \alpha_{\text{LDM}} \quad \text{soft} \]

Shells versus excitation

Both shell and anti-shell effects vanish at higher nuclear temperatures.

\[\delta W \rightarrow 0 \quad \text{for} \quad T \rightarrow \]

Stiff shell nuclei become softer
Soft anti-shell nuclei become stiffer

\[\text{Jensen-Damgaard 1973} \]
Scission Point Model (SPM)

SPM is intuitively simple but inspiring for discussing energies of FFs.

Scission configuration = two aligned spheroids

\[V = V_{\text{Coul}} + V_{\text{Def}} = \frac{Z_1 Z_2}{D_1 + D_2 + d} + \alpha_1 (D_1 - R_{01})^2 + \alpha_2 (D_2 - R_{02})^2 \]

Energy set free in fission

\[Q = \text{TKE} + \text{TXE} = (V_{\text{Coul}} + E_{\text{Kpre}}) + (V_{\text{Def}} + E_{\text{int}}^*) \]

Quasi-static configuration for \(V \) at minimum:

\[\frac{\partial V}{\partial D_1} = 0 \quad \text{and} \quad \frac{\partial V}{\partial D_2} = 0 \]

\[\rightarrow \text{calculate for } V \text{ at minimum} \]

\[\frac{V_{\text{Def1}}}{V_{\text{Def2}}} = \frac{\alpha_2}{\alpha_1} \]

Assume scission occurs for deformation with \(V \) at minimum:

stiff FF1 has small \(V_{\text{DEF1}} \)
soft FF2 has large \(V_{\text{DEF2}} \)
Shells and Anti-shells in Kinetic Energies of Fragments

- Dip in TKE for symmetric fission
 - At mass symmetry: 2 FF with 2 x 120 u
 → 2 soft anti-shell FF strongly elongated
 - low V_{Coul} and dip in TKE

- Mass asymmetry
 - steered by 132Sn with Z = 50 and N = 82
 - stiff shell with compact scission config.
 - large V_{Coul} and hence large TKE

- Superasymmetric Fi
 - $A_{\text{LF}} \approx 80$ u and $A_{\text{HF}} \approx 160$ u
 - soft shell and strong anti-shell
 - elongated scission conf.
 - low V_{Coul} and low TKE

- Increasing excitation:
 - Shells become softer: TKE
 - Anti-shells stiffer: TKE

Increasing excitation:
Shells become softer: TKE
Anti-shells stiffer: TKE

Straede 1987
Ruben 1991
Shells and Anti-shells in Neutron Emission from Fragments

- Sawtooth of neutron multiplicity $\nu(A)$
 Combine stiff shell at $A_H = 132$ u
 with soft anti-shell at $A_L = 120$ u.
 From SPM:
 $$\frac{V_{\text{Def}}_H}{V_{\text{Def}}_L} = \frac{\alpha_L}{\alpha_H} < 1$$
 Following relaxation of V_{DEF}:
 $$\frac{E^*_H}{E^*_L} < 1$$
 Neutrons drain E^* → $\nu_H / \nu_L < 1$

- For excitation energy increased:
 Stiff shell nuclei become softer and
 Soft anti-shell nuclei become stiffer.
 → $\nu(A)$ sawtooth fades away
 At high E^* n-multiplicity approaches
 smooth increase of ν / E^* predicted
 by LDM
Y(A) and TKE(A_H) in actinides has 2 components:

Symmetric and Asymmetric Fission

Turkevich-Niday: two “modes”
symm. ↔ asymm. evolve independently with excitation

Symm. fission: anti-shells
Asymm. fission: shells

Glendenin 1980

Independent evolution directly observed in TKE(A_H).
Separate Gaussians for symmetric and asymmetric fission.
TKE(A_H) distribution in overlap is broad and skewed.

Holubarsch 1971

Theory

PES has 2 distinct paths bifurcating in 2nd minimum.
Down to scission the 2 paths are separated by a high ridge.

Möller 2001

Double-humped barrier on the way from grd. state to scission.
At 2nd saddle the 2 barriers differ in shape and height.
Brosa modes

Bimodal Asymmetric Fission

Fine structure in asymmetric fission:

Mass Distribution

![Mass Yield vs Pre-Neutron Mass](image)

- Brosa: Standard I ↔ Standard II
- \(A_H \): spherical shell ↔ deformed shell in Heavy Fragment

TKE Distribution

![TKE Distribution](image)

Mode Analysis of \(Y(A) \) and \(\text{TKE}(A) \)

- **SL**: 118, 157(1), 72, anti-shell
- **St I**: 134, 187(1), 82, spherical shell
- **St II**: 142, 167(1), 88, deformed shell

Knitter 1987

Wagemans 1989
Angular Distributions of Fragments

in near barrier (n,f) reactions with (e,e) targets

- Fission prone nucleus near saddle = spheroid
- good quantum numbers are J, M and K
- FF are ejected along axis of elongation: fission axis
- Angular distribution of FF ≡ orientation of fission axis
 \[W^{J_{MK}}(\theta) \sim |D^{J_{MK}}|^2 \]
 with \(\theta = \angle(n,FF) \) and \(D^{J_{MK}} \) = wavefn of symmetric top

For \(K = \frac{1}{2} \) FF are ejected
 along n beam axis (\(\theta = 0 \))

For \(K = \frac{3}{2} \) and larger FF are ejected
 sideways (\(\theta > 0 \))

\(K \) quantum numbers characterize \(W(\theta) \)
Angular Distributions of Fragments

ABOVE BARRIER

$^{234}\text{U}(n,f)$: fi cross section with $B_f \approx 1.2$ MeV and $B_n = 5.3$ MeV

(n,f) for (e,e) target:
- Target spin $I = 0$
- Neutron spin $s = \frac{1}{2}$
- Neutron orbital $l \perp n$-beam
- Total spin $J = I + l + s$
- Projection on beam $M = \pm \frac{1}{2}$

Turkevich-Niday Modes
Symmetric and asymmetric fission have different barriers. Hence (J,K) numbers differ for symmetric \leftrightarrow asymmetric fission.

$W(\theta)$ symm. fission $\neq W(\theta)$ asymm. fission

where $\theta = \angle (n,\text{FF})$

Brosa Modes
Study for asymmetric fission the anisotropy $W(0^\circ) / W(90^\circ)$ for ST I and ST II

No correlation of angular anisotropy on mass asymmetry is observed.

Indication from A. Bohr postulate:

ST I and ST II are fed by the same transition state
Angular Distributions of Fragments

SUB BARRIER

W(θ) in sub-barrier resonances

\(^{234}\text{U}(n,f): \) \(E_n = 0.55 \) and \(E_n = 0.77 \) MeV

Characterize \(Y(A) \) by \(\langle A_H \rangle \) and compare \(\langle A_H \rangle \) for \(θ = 0° \) and \(90° \).

Find \(\langle A_H \rangle_{0°} \neq \langle A_H \rangle_{90°} \)

Example for \(E_n = 0.55 \) MeV resonance:
At \(θ = 90° \) St II/ST I larger than at \(θ = 0° \)

Conclusion:
In tunnel resonance St I and St II are fed at different angles \(θ \) with different \((J,K) \).

A. Bohr postulate is not valid

Resonance properties of \(^{234}\text{U}(n,f)\)

Resonances in \(σ_{fi} \) are due to tunneling being reinforced by \(β \)-vibrations in 2\(^{nd}\) minimum.

Minimum of TKE signals preferential feeding of mode St II (note: \(\langle \text{TKE} \rangle_{St\ II} < \langle \text{TKE} \rangle_{St\ I} \)).

\(E_n = 0.55 \) MeV: St II is reinforced at \(θ = 90° \): \(K = 3/2 \).
\(E_n = 0.77 \) MeV: St II is reinforced at \(θ = 0° \): \(K = 1/2 \).

K of \(β \)-vibrations are \(K = 3/2 \) and \(K = 1/2 \) resp.
Turkevich-Niday ↔ **Brosa Modes**

- Symmetric - asymmetric fission ↔ Bimodal asymmetric fission
- Shell ↔ anti-shell ↔ Spherical ↔ deformed shell

- Turkevich-Niday modes differ in transition states → \((J,K)\) differs → \(W(\theta)\) differs

- Brosa ST I and ST II modes in above-barrier fission follow A. Bohr postulate:
 - Identical \((J,K)\) signatures and hence identical \(W(\theta)\) for all masses and TKE in asymm. fission

- For tunnel resonances in sub-barrier fission there is no Bohr-like postulate. Hence
 - St I and St II are fed by different \((J,K)\) leading to different \(W(\theta)\) for the two modes.

- Mass asymmetry and angular anisotropy are correlated

- Corollary: St I and St II bifurcate only once all barriers have been passed
References

[19] A. Turkevich and J.B. Niday, Phys. Rev. 84, 52 (1951)